THE POISSON BRACKET FOR POISSON FORMS IN MULTISYMPLECTIC FIELD THEORY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Poisson Bracket on Multisymplectic Phase Space ∗

A new Poisson bracket for Hamiltonian forms on the full multisymplectic phase space is defined. At least for forms of degree n − 1, where n is the dimension of space-time, Jacobi's identity is fulfilled.

متن کامل

Vol. Xx (xxxx) a Poisson Bracket on Multisymplectic Phase Space *

A new Poisson bracket for Hamiltonian forms on the full multisymplectic phase space is defined. At least for forms of degree n − 1, where n is the dimension of space-time, Jacobi's identity is fulfilled.

متن کامل

Poisson Bracket Formulation of Nematic Polymer Dynamics

We formulate the dynamical theory of nematic polymers, starting from a microscopic Poisson bracket approach. We find that the Poisson bracket between the nematic director and momentum depends on the (Maier-Saupe) order parameter of the nematic phase. We use this to derive reactive couplings of the nematic director to the strain rates. Additionally, we find that local dynamics breaks down as the...

متن کامل

Poisson bracket for the Vlasov equation on a symplectic leaf

It is by now well known that many nondissipative continuous systems possess a Hamiltonian structure, which when viewed in terms of Eulerian variables has a noncanonical form. Examples from plasma physics include ideal magnetohydrodynamics (MHD) [1], theVlasovequation [2], the two-fluid equations [3], and the BBGKY hierarchy [4]. A common feature of all these systems is that they possess Casimir...

متن کامل

A General Construction of Poisson Brackets on Exact Multisymplectic Manifolds

Multisymplectic geometry provides a mathematical framework to describe classical field theory geometrically. Within this formulation it is not necessary to break manifest Lorentz covariance nor is there a need to use concepts from infinite dimensional geometry. The formalism dates back to the early work by De Donder, Dedecker, and Weyl. By now the exploration of its geometrical aspects has reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Reviews in Mathematical Physics

سال: 2003

ISSN: 0129-055X,1793-6659

DOI: 10.1142/s0129055x03001734